When the adjective \textit{possible} combines with a common noun \textit{N}, the result typically denotes those individuals satisfying \textit{N} in some possible world. \textit{Possible candidate} in (1), for instance, denotes those individuals that are candidates in some possible world.

(1) Mary interviewed a \textbf{possible candidate}.

(\textit{cf.} Mary interviewed someone that was a \textit{possible candidate}.)

Consider now the interpretation of example (2), which also contains \textit{possible} plus a noun:

(2) Mary interviewed every \textbf{possible candidate} (on her recent press tour).

a. 'Mary interviewed everyone that was a \textit{possible candidate}.'

b. 'Mary interviewed every (actual) \textit{candidate} that it was \textit{possible} for her to interview.'

Interestingly, (2) is ambiguous. It shows a reading parallel to (1), where Mary interviewed everyone who was a possible candidate (2a). But it also shows a second, unexpected reading on which \textit{possible} does not seem to modify \textit{candidate} directly, but rather indirectly through an implicit relative clause (2b). On this second reading, Mary doesn’t interview potential candidates, but rather \textit{actual} candidates that it was possible for her to interview. I’ll call the first reading the "direct modification reading", and I’ll call the 2nd reading the "implicit relative reading" (IRR).

Other examples with IRRs are shown in (3). So, for example, (3a) can be read as saying that Alex tried to hire the tallest individuals that were possible or potential players - the direct modification reading. But it also has a very natural reading where he tried to hire the tallest actual players that it was possible to hire - the implicit relative reading. And so on:
In this paper, I explore implicit relative readings, proposing that they are produced by a process very similar to Antecedent Contained Deletion (ACD), as discussed by Sag (1976), Williams (1977), May (1985) and many others. As I hope to show, this analysis both sheds light on the IRR phenomenon and provides an extension of ACD into an interesting new domain.

1.0 Restrictions on IRRs

We begin by observing two important, and initially puzzling lexical restrictions on IRRs; one a restriction on the choice of adjective and the other on the choice of determiner.

Notice first of all that although possible and certain -able adjectives license IRRs, other semantically similar adjectives like potential and probable do not (4):

(4) Mary sampled every potential/probable food.

'Mary sampled everything that was potentially/probably a food.'

'*Mary sampled every food that it was possible/probable to sample’ (IRR)

Furthermore, note that although IRRs are licensed by universal determiners like every or all, or by a superlative as in (3a), other determiners do not seem to sanction the reading. Compare (5):

(3a) Alex tried to hire the tallest possible players.
(cf. Alex tried to hire the tallest players that it was possible to hire.)

(5) Mary interviewed a/no/three/more/ a taller possible candidate(s).

(≠ Mary interviewed a/no/three/more candidate(s) that it was possible to interview.)

These lexical restrictions on IRRs appear idiosyncratic at first. On further reflection, however, we notice there are other independent differences between the adjectives and determiners in question. Observe that one difference between the adjective possible and its counterparts potential and probable is that the former allows an infinitival clausal complement, whereas the latter do not (6a,b)

(6) a. It is possible [PRO to interview that candidate].

b. *It is potential/probable [PRO to interview that candidate].
Furthermore, note that the relevant Ds have the property of permitting an A to occur post-nominally; this is not so with the other determiners (7a,b):

(7) a. Mary sampled every/all/ the sweetest food(s) possible.
 b. *Mary sampled a/no/three/more food(s) possible.

2.0 A Promotion Analysis

Let us now observe two additional relevant facts. On its implicit relative reading, (2) is synonymous with (8), in which the adjective appears postnominally. In fact (8) is unambiguous, having only the IRR reading, and lacking the direct modification reading.

(2) Mary interviewed every possible candidate.

(8) Mary interviewed every candidate possible.
 (= Mary interviewed every potential candidate)

Furthermore, (8) itself appears to be an elliptical version of (9), which contains a postnominal adjective with an infinitival complement:

(9) Mary interviewed every candidate [possible for her to interview t]

These points suggest that (2), on its IRR, might actually derive from a source equivalent to (9), where the A originates postnominally and is subsequently fronted, and where the adjective takes an infinitival complement that remains elliptical:

(10) Mary interviewed every possible candidate [t [for her to interview t]]

This analysis would account for the synonymy among (9), (8) and (2) on its IRR. (2) is synonymous with (9) because it literally derives from it; and (8) is synonymous with (2) because it’s just an elliptical version of (9).

The promotion analysis would also account for our two restrictions on IRRs. Since the prenominal adjective originates in postnominal position, we expect that only determiners allowing postnominal adjectives would allow IRRs. So universal determiners would permit the reading since they permit a postnominal adjective, but determiners like some or most would not. Furthermore, since the relativized position (t) occurs inside a clausal complement to the adjective, only adjectives selecting clausal complements would be expected to allow IRRs. So possible would allow such a reading since it takes a nonfinite complement, but potential and probable would not.
If this syntactic account of the implicit relative reading is correct, it immediately raises the question of the direct modification reading, and how it is structurally represented. Without going into details, it appears that when the adjective has the direct modification reading it occupies a structurally different site, one that is closer to the noun. The easiest way to see this is with examples like (11a-c) in which two adjectives are present and in which both readings are simultaneously observed:

(11) a. Mary interviewed every possible potential candidate.
 (= Mary interviewed every potential candidate possible for her to interview.)
 b. Mary interviewed every potential candidate possible.
 c. Mary interviewed every possible possible candidate.
 (= Mary interviewed every possible candidate possible for her to interview.)
 d. Mary interviewed every possible candidate possible.

Notice further that in examples like (11a, c) with a sequence of two prenominal adjectives, intuition tells us that the first adjective has the implicit relative reading whereas the second has the direct modification reading. In other words the situation appears to be as in (12):

(12) Mary interviewed

\[
\begin{array}{c|c}
\text{IRR} & \text{DM} \\
\hline
\text{every possible} & \text{[potential/possible candidate [t [for her to interview t]]]}
\end{array}
\]

3.0 ACD and the Elliptical Complement

An important question so far left open by this approach is how the content of the elliptical complement clause is determined with IRRs. The examples in (2) and (3c) show that this content is derived, at least in part, from the containing clause. Thus possible is understood as possible for her to interview in (2), whereas it is understood as possible for her to sample in (3c), and so on:

(2) Mary interviewed every possible candidate
 (cf. Mary interviewed every candidate possible for her to interview.)
(3c) Alice sampled all possible foods.
 (cf. Alice sampled all foods possible for her to sample.)

I want to suggest that reconstruction of the elliptical clause is a variant of what occurs in A(ntecedent) C(ontained) D(letion), a phenomenon that has been widely discussed in the literature.
3.1 ACD with an Elliptical VP

ACD comes in number of different forms. A typical example is (13), in which an elliptical VP occurs inside the matrix VP serving as its reconstruction source:

\[(13) \text{Mary } [\text{VP interviewed every candidate she could } [\text{VP } \emptyset]].\]

(cf. Mary interviewed every candidate she could interview.)

Under proposals by Sag (1976) and May (1985), (13) has the approximate structure in (14a) and the content of the elliptical VP is recovered in two steps. First, the object undergoes quantifier raising (QR) at LF (14b). The elliptical VP then reconstructs from the matrix VP, which no longer contains it (14c).

\[(14)\]

\[a. \text{Mary PST } [\text{VP interview } [\text{DP every candidate } [\text{OP she could } [\text{VP } \emptyset]]]]]
\[b. [\text{OP every candidate } [\text{OP she could } [\text{VP interview } t_t]]] \text{ Mary PST } [\text{VP interview } t_t] \]
\[\text{QUANTIFIER RAISING}
\[c. [\text{OP every candidate } [\text{OP she could } [\text{VP interview } t_t]]] \text{ RECONSTRUCT VP}
\[\text{Mary PST } [\text{VP interview } t']\]

The result is a logical form with the appropriate interpretation.

3.2 ACD with an Elliptical CP

This standard form of ACD example exhibits the interaction of quantifier raising with VP ellipsis. A less familiar form shows the interaction of quantifier raising with CP ellipsis. Consider (15a-c), a class of cases first noted (to my knowledge) by J-R Vergnaud (1975).\(^1\) Notice that in each case what is elliptical, and what is reconstructed from the containing matrix, is an entire clause:

\[(15)\]

\[a. \text{Mary interviewed everyone you thought } [\text{CP } \emptyset].\]
\[\text{(cf. Mary interviewed everyone you thought that she would interview } t_t)\]
\[b. \text{Alice invited no one you’d imagine } [\text{CP } \emptyset] \text{ to the party.}\]
\[\text{(cf. Alice invited no one that you would imagine that she would invite } t_t \text{ to the party.)}\]
\[c. \text{Max saw everyone I claimed } [\text{CP } \emptyset].\]
\[\text{(cf. Max saw everyone I claimed that Mary saw } t_t)\]

These can be derived by a process basically identical to that in (14). The underlying structure is roughly as in (16a). Once again, the object undergoes quantifier raising at LF (16b). The elliptical CP then reconstructs from the matrix clause (16c).

\(^1\)I am grateful to D. Sportiche for this reference; see also Häik (1984).
Although the issue is not entirely clear to me, the form of ellipsis involved in this second set of cases appears to be Null Complement Anaphora, which permits a clausal complement to be implicit (see Hankamer and Sag 1976 and Grimshaw 1979). As (17a-c) show, the verbs in (15) are ones permitting NCA. NCA is also available with possible, and the other adjectives licensing IRRs, as shown in (18):

(17) a. Did Mary interview Lewis?
I think (that Mary interviewed Lewis).

b. Did she invite his cell mates to the reunion?
I imagine (that she invited his cell mates).

c. Did Mary also see Aunt Eunice there?
She claims (that she saw Aunt Eunice there).

(18) Did Mary interview that candidate?
It’s possible/conceivable/?imaginable (that she interviewed that candidate).

3.3 ACD with Possible

Suppose now that when possible has an IRR it originates post-nominally with an empty clausal complement licensed by Null Complement Anaphora. Suppose further that at Logical Form (LF) possible reconstructs to its postnominal position. Under this proposal, (2) has a representation as in (19a). The quantified object raises at LF, as shown in (19b). CP can then reconstruct from the matrix clause, resulting in (19c):

(19) a. [CP Mary PST interview [DP every candidate [OP, possible [CP Ø]]]]

b. [DP every candidate [OP, possible [CP Ø]] [CP Mary PST interview t_i]]

QUANTIFIER RAISING

[CP Mary PST interview t_i]

RECONSTRUCT CP

This derivation is nearly parallel to the previous one and appears to yield a logical form with the correct interpretation. The only difference is that in the derivation given,
the finite matrix clause in (19c) reconstructs as a nonfinite clause. This assumption is necessary in order to capture the meaning of the sentence correctly, on its IRR. *Mary interviewed every possible candidate* is not appropriately rendered as *Mary interviewed every candidate that it is possible that she interviewed*, with literal copying of finite for finite. Instead, as we have noted, what we need is something like *Mary interviewed every candidate that it is possible for her to interview*.

Reconstruction of a nonfinite clause from a finite one appears to be a possibility made available by Null Complement Anaphora, as shown by examples like (20a-c).² Although the source clause is finite, it appears necessary in each case to assume that the reconstructed clause is nonfinite (infinitival or subjunctive):³

(20) Can Gwen lift 100 lbs?
 a. I believe it’s (im)possible.
 (cf. *It’s (im)possible for Gwen to lift 100 lbs.*)
 b. Yes, but it isn’t easy.
 (cf. *It isn’t easy for Gwen to lift 100 lbs.*)
 c. Should the King abdicate?
 We consider it preferable.
 (cf. *We consider it preferable for the King to abdicate/that the King should abdicate.*)

Furthermore, the ability to reconstruct a nonfinite complement seems to be independently attested in ACD examples like (21a,b), which are similar to (15a-c) given earlier:

(21) a. Max did everything you said Ø.
 (cf. Max did everything you said *that he did*.
 and: Max did everything you said to do.)
 b. I did everything you asked me Ø.
 (cf. *I did everything you asked me to do*)

Thus if this is correct, then it appears that the differences between the form of ACD observed in standard examples like (13), and those observed in the IRRs of adjectives, ²NCA also appears able to alter the illocutionary force of a complement and to insert a complement izer:

(i) a. I wonder whether John went to Paris
 I imagine (that John went to Paris)
 b. John went to Paris.
 Really? I wonder (whether John did go to Paris).

³It is attractive to view this change as a form of what Fiengo and May (1993) refer to as "vehicle change", where certain features are allowed to vary between the source and the reconstructed element. A typical example of "vehicle change" is the reconstruction of a proper name as a bound pronoun.
may be attributable to the different forms of ellipsis involved: VP Ellipsis in the first case and Null Complement Anaphora in the second.

3.4 Possible for x to... Versus Possible for pro to...

A consistent assumption made here has been that the proper gloss of the IRR is as in (22a), which contains a pronoun bound to the subject. One might question this and ask whether in fact the right gloss isn’t (22b), where the subject of the reconstructed clause is small pro, a free pronoun with indefinite reference.

(22) Mary interviewed every possible candidate
 a. ‘Mary interviewed every candidate possible for her to interview’
 b. ‘Mary interviewed every candidate possible pro to interview’
 (i.e., ’possible for anyone to interview’)

Although the judgments are subtle, scope appears to give evidence for the (22a) gloss.

Consider first (23a); this exhibits the standard ambiguity in which three managers can take scope over every candidate (23b) or every candidate can take scope over three managers (23c):

(23) a. Three managers interviewed every candidate.
 b. 3 > ∀ (same 3 interviewers for each candidate)
 c. ∀ > 3 (each candidate gets 3, potentially different, interviewers)

To my ear, however, (24a) is not similarly ambiguous on the implicit relative reading of possible. In particular, although we can understand the same three managers interviewing all the candidates (24b), we cannot understand all the candidates as getting different sets of three interviewers (24c).

(24) a. Three managers interviewed every possible candidate. (IRR)
 b. 3 > ∀ √
 c. ∀ > 3 *

A similar point is made by (25a), suggested to me by D. Sportiche. The use of different in the subject DP strongly favors a reading where the object takes widest scope. Notice now that although this example is fine with Direct Modification Reading of possible (25b), the Implicit Relative Reading does not seem to be available (25c):

(25) a. A different manager interviewed every possible candidate.
 b. Direct Modification Reading √
 c. Implicit Relative Reading *
These facts are correctly explained if the reconstructed form in the IRR follows (22a) and not (22b). The missing readings will be excluded as proper binding violations. Compare (26a,b), the logical forms corresponding to readings (24b) and (24c), respectively. When the subject quantifier takes widest scope, as in (26a), it correctly binds the x variable inside the object quantifier. However, when the object quantifier takes widest scope, as in (26b), this variable fails to be bound, violating the proper binding condition.

\begin{enumerate}
\item \text{three} x : manager x \ [every y : candidate y \& possible for x to interview y] x interviewed y
\item *[every y : candidate y \& possible for x to interview y] \text{three} x : manager x \ x interviewed y
\end{enumerate}

If the reconstruction in (22b) were available to us, then \textit{ceteris paribus} nothing would exclude the missing reading. Both (27a) and (27b) appear to be fully well-formed:

\begin{enumerate}
\item \text{three} x : manager x \ [every y : candidate y \& possible for pro to interview y] x interviewed y
\item *[every y : candidate y \& possible for pro to interview y] \text{three} x : manager x \ x interviewed y
\end{enumerate}

Similar remarks apply to the contrast in (25). On the basis of these data, I conclude that the reconstruction in (22a) is the correct one, and that the adjectival complement must contain a bound pronoun.

\section{4.0 Extensions}

This analysis offered here appears to generalize to a range of additional data, although in each case interesting new questions & challenges arise.

\subsection{4.1 Argument Ellipsis}

Elliptical VPs are possible inside relatives in subject nominals (28). In this case reconstruction appears straightforward, as shown in (29). Basically one just copies the VP:

\begin{enumerate}
\item Every candidate that could Ø ordered spaghetti.
\item Every candidate [OP, that t, could [vp Ø]] PST [vp order spaghetti].
\item Every candidate [OP, that t, could [vp order spaghetti]]
\item PST [vp order spaghetti].
\item RECONSTRUCT VP
\end{enumerate}
This process has been referred to in the literature as "argument ellipsis" (Kennedy 1994).

Something very similar appears to be available with elliptical CPs like (30), and with possible when the latter takes an IRR in subject position. Consider (31a). On reflection, this example can be seen to have a reading very close to (28), so that our understanding of every possible candidate in (30) is something like "every candidate who could possibly order spaghetti".

(30) [Every candidate you said Ø] ordered spaghetti,
 (cf. Every candidate you said t ordered spaghetti ordered spaghetti.)

(31) a. Every possible candidate ordered spaghetti. (= (28) on one reading)
 b. [CP [OP every candidate [OP possible [CP Ø]]] PST order spaghetti]

However, the analysis of (31) is more complex than (28). Whereas the ellipsis site is not antecedent-contained in (28), it is antecedent-contained in (31), as one can see by examining (31b). This means that, unlike the analysis of (28), the analysis of (31a) must appeal to quantifier raising, both to move [CP Ø] outside its containing clause, as shown in (32a), and to provide a variable (ti) for OP to bind after reconstruction, as shown in (32b):

(32) a. [CP [OP every candidate [OP possible [CP Ø]]] PST order spaghetti]
 b. [OP every candidate [OP possible [CP Ø]]] [CP ti PST order spaghetti]
 c. [OP every candidate [OP possible [CP ti to order spaghetti]]] [CP ti PST spaghetti]

There is a further interesting complexity with (31a). Notice once again that we want the reconstructed clause to be nonfinite (nontensed), not finite. We want the equivalent of (33a), not that of (33b):

(33) a. Every candidate such that it was possible for her/him to order spaghetti ordered spaghetti.
 b. *Every candidate such that it was possible that he/she ordered spaghetti ordered spaghetti.

However if we reconstruct a nonfinite clause, we are, in effect, reconstructing a variable in a non-case marked position at LF, something that is not permitted at PF:

(34) *Every candidate possible for t to order spaghetti ordered spaghetti.

Thus if we analyze the IRR reading of (28) as obtained by ACD, then we appear to be committed to the view that the case-marking requirement on variables is purely a PF phenomenon, and not part of the essential definition of a variable, as has sometimes
been assumed (cf. Chomsky 1982).

4.2 French -Able

Häik (1984) notes readings for certain French -able adjective constructions that appear similar to the IRRs reported here:

(35) Jean a épousé une femme incroyable
 Jean Aux married a woman unbelievable
 ' Jean married a woman such that it’s unbelievable (of him) that he married her

Häik states that incroyable (on the relevant reading) applies to the whole clause, so that what’s unbelievable is that John married the woman in question. Häik offers a derivation as in (36), where the DP containing incroyable raises at LF, and the where the adjectives then raises out of the DP and applies to its containing clause.

(36) [incroyable] [une femme t] Jean a épousé t

Häik’s proposal encounters a number of serious problems, however.

First, on the structure in (36), possible is a modifier of the sentence; if so, why was it generated in DP in the first place? Why was it projected in construction with an element to which it bears no thematic/semantic relation?

Second, and even more seriously, on the proposal in (36), possible is not a modifier of femme. But truth-conditionally, AP must restrict femme; the woman must be one that it is impossible to believe Jean married. So, compositionally, (36) appears quite problematic.

By contrast, an ACD derivation parallel to that given for English possible appears to capture the meaning of (35) correctly, without the problems encountered by Häik. The derivation is shown in (37):

(37) a. [CP Jean PST épousé [DP une femme [OP, incroyable [CP Ø]]]]
 b. [DP une femme [OP, incroyable [CP Ø]]] [CP Jean PST épousé t,]
 c. [DP une femme [OP, incroyable [CP Jean INFL épouser t,]]]
 [CP Jean PST épousé t,]

Here incroyable takes a clausal complement that is reconstructed after QR breaks up the containment relation. Thus incroyable applies to a clause identical in relevant respects to the matrix, but it doesn’t need to climb outside the DP in order to do so. Furthermore, "unbelievable for him to have married" ends up modifying the noun femme, as desired.
4.3 Wrong ACD?

Häik (1984) also notes facts involving the adjective wrong that may fall under the ACD account. (Right works the same) Consider (38), which means ’Peter talked to the man he wasn’t supposed to talk to’.

(38) Peter talked to the wrong man.

Wrong-ness is invariably assessed along some dimension, which is always present, whether explicitly or implicitly. When wrong takes an infinitival complement, this complement supplies the dimension (39a,b).

(39) a. Peter was wrong.
 b. Peter was wrong [PRO to talk to Jason].

We might thus analyze (38) (on the relevant reading) as in (40), containing a hidden infinitival ”dimension complement” with an empty CP that is reconstructed:

(40) a. [CP Peter PST talk to [DP the [OPi wrong [CP Ø] man]]]
 b. [DP the [OPi, wrong [CP Ø] man] [CP Peter PST talk to t]]
 c. [DPi the [OPi, wrong [CP for Peter INFL talk to t]] man] [CP Peter PST talk to t]

And cases like (41a) from Häik would then represent argument ellipsis on our account. (41a) means something like ’the man who wasn’t supposed to kill Peter killed Peter’. It would be derived as in (41b-c)

(41) a. The wrong man killed Peter.
 b. [DP the [wrong [CP Ø] man] killed Peter.
 c. [DPi the [OPi, wrong [CP for Peter INFL talk to t]] man] [CP t, PST kill Peter]

4.3.1 Scope Ambiguities

There is a further parallel between the wrong cases, and cases of ACD. Larson and May (1987) note that ACD reconstruction can be ambiguous in embedded contexts. For example, (42a) allows either the embedded VP or the matrix VP to function as reconstruction source (cf. (42b,c), respectively):

(42) John wanted to visit every city you did [vp Ø].
 a. ’John wanted to visit every city you visited’
 b. ’John wanted to visit every city you wanted to visit’

This result is derived by assigning (42) the underlying structure in (43), and by permitting two possible reconstruction scenarios. If DP raises and reconstructs within
the embedded clause, as shown in (44), we get the reading in (42). If DP raises to the matrix clause and reconstructs there, as shown in (45), we get the reading in (42b):

(43) John [\[VP wanted [PRO to [VP visit [DP every city you did [VP Ø]]]]]

(44) a. John [\[VP wanted [[DP every city you did [VP Ø]] [PRO to [VP visit t]]]]]
 b. John [\[VP wanted [[DP every city you did [VP visit t]] [PRO to [VP visit t]]]]]

(45) a. [DP every city you did [VP Ø]] John [\[VP wanted [PRO to [VP visit t]]]]
 b. [DP every city you did [VP want [PRO to [VP visit t]]]
 John [\[VP wanted [PRO to [VP visit t]]]]

Interestingly, Häik (1984) notes what appears to be a similar case with wrong. Consider her (46). On reflection it, the sentence is ambiguous. On the one hand, John may believe that the person who killed Peter was the wrong person to do so. Perhaps he thought Max should do the job, but Felix did it instead. That’s the reading in (46a). On the other hand, John may simply be wrong in his belief about who committed murder. John believes Max to have killed Peter, when in fact it was Felix who was guilty. That’s the reading in (46b).

(46) John believes the wrong man to have killed Peter
 a. 'John believes a man to have killed Peter who was the wrong one to have killed Peter.
 b. 'John believes a man to have killed Peter who is the wrong one to believe to have killed Peter’

These two readings can be given derivations parallel to those in (44) and (45). If the wrong man raises and reconstructs the complement in the embedded clause, the result is (46a). If the wrong man raises to the matrix clause and reconstructs its complement there, the result is (46b). So the analysis of (46) becomes fully parallel to that of (43).

4.3.2 Problems

Before concluding on too rosy a note, we should observe that the facts with possible and wrong do differ in important ways, so assimilation is not entirely straightforward. First, the Ds licensing ACD with possible do not co-occur with wrong (47a); in fact wrong only seems to permit the definite determiner (47b):

(47) a. *Peter saw every wrong man/all wrong men
 b. *Peter saw a/each wrong man//many/two/ wrong men

Second, wrong, unlike possible, cannot normally occur in postnominal position. An example like (48), for instance, is completely out:

(48) *Peter saw the man wrong.
I can only offer tentative suggestions at this point regarding this behavior. The restriction of wrong and right to the definite article the seems to be associated with the fact that, semantically, these adjectives behave rather like superlatives, in so far as they denote the extreme points of the scale of accuracy. Just as the superlative strongly prefers a definite, so do wrong and right. In effect then this represents an extra feature of their semantics.

The question regarding their inability to occur postnominally is more interesting. The crucial feature of postnominal position is that, for nearly all adjectives, complements are permitted only in postnominal position. Thus, on the whole, it is only adjectives that can originate postnominally that can take a complement and thus show an IRR. Interestingly, there is one class of exception to this: tough-adjectives. Although there are restrictions, tough-adjectives can appear prenominally with an infinitive complement in cases like a tough-to-find item, or an easy-to-make mistake. Interestingly, wrong and right are themselves tough-adjectives, in cases like John was wrong for us interview or Mary was right for us to recommend. Perhaps the two can be linked then: perhaps wrong and right can take IRRs, despite not occurring postnominally, because they are tough-adjectives. As such they don’t need to occur postnominally in order to license a complement. These remarks are largely speculative, of course, and would need to be developed further, but the general idea is clear enough.

5.0 Conclusions

In this paper we’ve examined an ambiguity with the adjective possible, and in the process of analyzing it we have reached a number of tentative, but quite interesting conclusions:

• As proposed by some of the earliest analyses in transformational grammar (Smith 1964, Jacobs and Rosenbaum 1968), some prenominal adjectives actually do originate postnominally - in effect as reduced relative clauses.

• Prenominal adjectives occupy structurally different sites, depending on whether they are understood as reduced relatives or direct N modifiers (see Larson (1998) for more on this). And one and the same adjective may occupy different sites, depending on its semantics.

• ACD occurs with adjectives functioning as reduced relatives, much as it does with full relatives.

• ACD can involve the interaction of quantifier raising and a number of different ellipsis operations - not only VP Ellipsis, but also Null Complement Anaphora.

• ACD potentially extends to a variety of adjectival constructions, including counterparts from other languages (French) and other cases is English, like wrong and right, that show similar, but interestingly different properties than possible.
References

